74 | 0 | 106 |
下载次数 | 被引频次 | 阅读次数 |
针对当前加氢站探测器相关研究集中于探测器本体采集性能优化,而未量化探测器覆盖率的问题,采用计算流体动力学分析加氢站氢气泄漏扩散行为,并结合场景分析法、空间分析法,对某综合加氢站火灾和气体探测系统开展探测器布局研究,综合评估现有火灾和气体探测系统中探测器覆盖率。结果表明:站场内仍有部分泄漏点、目标区域不能被火灾和气体探测系统有效探测,其中,6个泄漏点的可燃气体探测器覆盖率分别为66.7%、50.0%、16.7%、83.3%、66.7%、66.7%,仅有1个满足要求,可增设超声探测器作为可燃气体探测器的有效补充,对全站进行覆盖;4个目标区域的火焰探测器覆盖率分别为18.1%、2.4%、0、66.9%,均未满足要求,通过将现有火焰探测器进行角度、位置调整并增设火焰探测器,可将火焰探测器覆盖率全部提升至80%以上,从而有效避免火灾事故进一步扩大。
Abstract:Regarding the current research on hydrogen refueling station detectors, most of it focuses on optimizing the collection performance of the detector itself, without quantifying the detection coverage. Using computational fluid dynamics to analyze the hydrogen leakage and diffusion behavior of a hydrogen refueling station, combined with scenario analysis method and geographic analysis method, a detector layout study was conducted on the fire and gas system of a comprehensive hydrogen refueling station to comprehensively evaluate the detector coverage of existing fire and gas system. The results showed that there were still some leakage points and target areas within the hydrogen refueling station that cannot be effectively detected by fire and gas system. The coverage rates of gas detectors at 6 leakage points were 66.7%、50.0%、16.7%、83.3%、66.7%、66.7%, respectively, and only one met the requirements. Ultrasonic detectors can be added as an effective supplement to gas detectors to cover the entire station. The coverage rates of flame detectors in the 4 target areas were 18.1%、2.4%、0、66.9%, respectively, which did not meet the requirements. By adjusting the angle and position of the existing flame detectors and adding flame detectors, the coverage rate of flame detectors can be increased to over 80%, effectively avoiding further expansion of fire accidents.
[1] 沈晓波,章雪凝,刘海峰.高压氢气泄漏相关安全问题研究与进展[J].化工学报,2021,72(3):1217-1229.
[2] 邹才能,李建明,张茜,等.氢能工业现状、技术进展、挑战及前景[J].天然气工业,2022,42(4):1-20.
[3] 蔡炜.浅谈加氢站存在的安全问题及应对措施[J].中国石油和化工标准与质量,2025,45(3):12-16+21.
[4] 周雨轩,张志宇,刘洪涛,等.可再生能源大规模制氢技术现状及发展趋势[J].低温与特气,2025,43(1):15-18+33.
[5] 罗佐县.蓝绿结合,氢能发展树红线[J].中国石油石化,2019(13):38-39.
[6] 刘宇,周艳.火灾和气体安全系统的探测器覆盖率评估与优化[J].自动化技术与应用,2022,41(4):139-141.
[7] GB/T50493—2019 石油化工可燃气体和有毒气体检测报警设计标准[S].
[8] GB 50116—2013 火灾自动报警系统设计规范[S].
[9] ZHANG B,LIU X,SUN L,et al.A comparative study of optimization models for the gas detector layout in offshore platform[J].Ocean Engineering,2022,250,110880.
[10] LEE R W,KULESZ J J.A risk-based sensor placement methodology[J].Journal of Hazardous Materials,2008,158(2-3):417-429.
[11] QIN J,XIE Y,LIU J,et al.Natural gas diffusion behavior and gas detector layout in the ship engine room considering heat radiation effect[J].Ocean engineering,2025,317:120007.
[12] 章博,陈国明,龚金海,等.基于计算流体力学的集气站气体检测报警仪布置优化[J].中国石油大学学报(自然科学版),2010,34(5):141-146.
[13] 刘福志,李彬,李峰宜,等.油气站场可燃气体探测器布置优化技术研究[J].石油化工自动化,2024,60(5):40-44+51.
[14] 王一昊,辛保泉,张杰东,等.基于FLACS的LNG加气站可燃气体探测器覆盖率优化研究[J].工业安全与环保,2025,51(1):8-14.
[15] ISA-TR84.00.07—2018 Guidance on the evaluation of fire,combustible gas and toxic gas system effectiveness[S].
[16] 施志成,周勇,程旭东.基于不对称比的火灾烟雾探测器散射角优化[J].中国安全科学学报,2022,32(4):107-112.
[17] 何永勃,曹祝兵.基于IPSO-BP模型的火灾气体传感器气压补偿算法[J].中国安全科学学报,2022,32(2):107-114.
[18] 赵洪祥,李少鹏,刘凯祥.基于FLACS的氢气检测器布置优化[J].安全与环境学报,2020,115(1):121-126.
[19] 王海清,于芳,李玉明,等.基于LOPA方法的海上油气设施火气系统SIL定级研究[J].中国海上油气,2018,30(1):183-188.
[20] 杨凯东,王连佳,李鹏,等.FPSO重大风险监测系统设计与实施[J].船海工程,2019,48(5):75-79.
[21] GB/T39173—2020 智能工厂安全监测有效性评估方法[S].
[22] BP GP 30-85 Guidance on Practice for Fire and Gas Detection[S].
基本信息:
DOI:
中图分类号:TK91;TQ086.52
引用信息:
[1]李均海,顾蒙,刘迪,等.加氢站氢气泄漏扩散分析及火气系统优化[J].安全、健康和环境,2025,25(05):24-31.
基金信息:
国家科技部项目(2021YFC3001204),化工园区区域性爆炸计算预警及多要素抗爆能力提升技术研究